DRAINAGE CALCULATIONS, HYDRAULICS & HYDROLOGY REPORT

393 Butlertown Road Montville, CT

April 21, 2025
REVISED APRIL 28, 2025

-DRAINAGE HYDRAULICS AND HYDROLOGY REPORT

393 Butlertown Road Montville, CT

EXISTING CONDITIONS

The site is approximately 2.175 acres in area and is shown on the Existing Survey Plan (Sheet 1 of the site plans). The site has access onto Butlertown Road. There are no wetlands on the site.

PROPOSED DEVELOPMENT

This project is a modification of the previous approved site plan. The modification includes temporary sedimentation basins, in accordance with the 2024 CT Guidelines for Soil Erosion & Sedimentation Control, which will ultimately become a permanent water quality basin in accordance with the Connecticut the 2024 Stormwater Quality Manual (Manual).

EXISTING AND PROPOSED HYDRAULICS

The stormwater management system has been designed to provide for zero increase in peak stormwater discharge from the site. The project has been designed to actually result in a decrease in the peak stormwater rates leaving the project site. The proposed stormwater water quality basin will provide treatment of the runoff from the proposed site and the 5,000 gallon Oil/Water separator will provide pre-treatment.

The Proposed Drainage Area contains the proposed development for the entire 2.175 aces of the site. The stormwater runoff from proposed development will be treated by the proposed water quality basin. The basin has been modelled to assume that the basin will be a dry basin at elevation 234 the onset of the storm event.

Both the existing and the proposed conditions for the development site have been analyzed for the 2-year, 10-year, 25-year, 50-year, and 100 year design storms using the SCS model and the NOAA Type D rainfall distribution, which is included in the calculations.

Drainage Area 1

	2 Year	10 Year	25 Year	50 Year	100 Year
Existing	2.987 cfs	6.035 cfs	8.059 cfs	9.574 cfs	11.22 cfs
Proposed	2.079 cfs	3.880 cfs	5.304 cfs	6.292 cfs	7.107 cfs

EROSION & SEDIMENTATION CONTROL

The 2024 CT Guidelines for Soil Erosion & Sedimentation Control applies to the construction phase of the project. A detailed erosion and sediment control plan has been provided in the site development plans. The proposed stormwater water quality basin has been designed to function as sedimentation trap during stabilization. In addition, a temporary sedimentation trap is proposed along the frontage of the site, to collect the runoff from the front section of the site, which would miss the stormwater basin. This additional sediment trap has been included in the calculations.

The first calculation required by the Guidelines is for the sediment storage volume (SSV). The sediment storage volume is the calculation for one year of predicted sediment load. The required SSV calculation for the temporary sediment trap is shown below.

Drainage Area

SSV = A(134CY/Acre)

A = 2.2 ACRE

SSV = 294.8 CY = 7,960 CF

The second calculation required by the Guidelines is for wet storage volume (WSV). The wet storage volume is the volume in the basin that is located below the bottom of the riprap for the level spreader outlet of the basin. The volume of the wet storage is required to be half of the required SSV. The required wet storage volume is shown below along with the dry storage volumes (DSV).

The required and provided storage for the temporary sediment trap within the water quality basin, assuming the temporary trap is only excavated down to elevation 234:

Drainage Areas

Approximately half of the runoff from the site will go to the temporary sediment trap #1, along Butlertown Road and the other half will go the temporary sediment trap #2, within the Water Quality Basin. As the site grading progresses this will change at times, therefore both sediment traps have been over sized.

Sedimentation Trap #1

1,990 CF of Wet Storage Volume Required	2,774 CF Provided
1,990 CF of Dry Storage Volume Required	4,406 CF Provided
3,980 CF of Sediment Storage Volume Required	7,180 CF Total Provided

Sedimentation Trap #2

1,990 CF of Wet Storage Volume Required	5,951 CF Provided
1,990 CF of Dry Storage Volume Required	20,537 CF Provided
3,980 CF of Sediment Storage Volume Required	26,488 CF Total Provided

CONNECTICUT STORMWATER QUALITY MANUAL

The Connecticut 2024 Stormwater Quality Manual (Manual) applies to the post construction phase, for the operation of the facility. The temporary sediment trap has been designed to function as a water quality basin after the site is stabilized. The basin

meets the criteria of the Connecticut Stormwater Quality Manual for a Water Quality Basin.

Drainage Area 1

WQV = (1.3")(R)(A)/12 A = 2.2 Acre R = 0.05 + 0.009(I) I = 1.4 Acres / 2.2 Acres = 0.64 R = 0.63(64%)

WQV = 0.150 Ac-Ft = 6,540 CF (Required)

4,531 CF (Provided in Water Quality Basin between elevation 234 and 235.5)

5,548 CF (Provided in Water Quality Basin between elevation 228 and 234)

Total WQV = 10,079 CF

The Manual calls for 6 inches of freeboard for the 10 year storm event and 3 inches of freeboard for the 100 year storm event. We have provided over a foot of freeboard for the 100 year storm event.

Once development of the site is completed, there will be a decrease in volume and runoff from the site. The temporary sedimentation basin provides ample wet and dry storage volume to meet and exceed the requirements of the 2024 CT Guidelines for Soil & Sedimentation Control, as well as the 2024 CT Guidelines for Soil & Sedimentation Control. Likewise, the Water Quality Basin meets and exceeds the post construction requirements of the Connecticut 2024 Stormwater Quality Manual.

DRAINAGE LEVEL SPREADER AT OUTLET FROM WATER QUALITY BASIN:

The attached drainage calculations shows that for a 25 year design storm, the rip rap level spreader will have a peak flow of 5.304 cfs (the Manual calls for a maximum of

3 FT/Sec for the 10 year storm, we are using the 25 year storm event) and a depth of 0.31 feet, providing over 6 inches of free board in the swale. The calculations also show a velocity of 1.61 ft/sec.

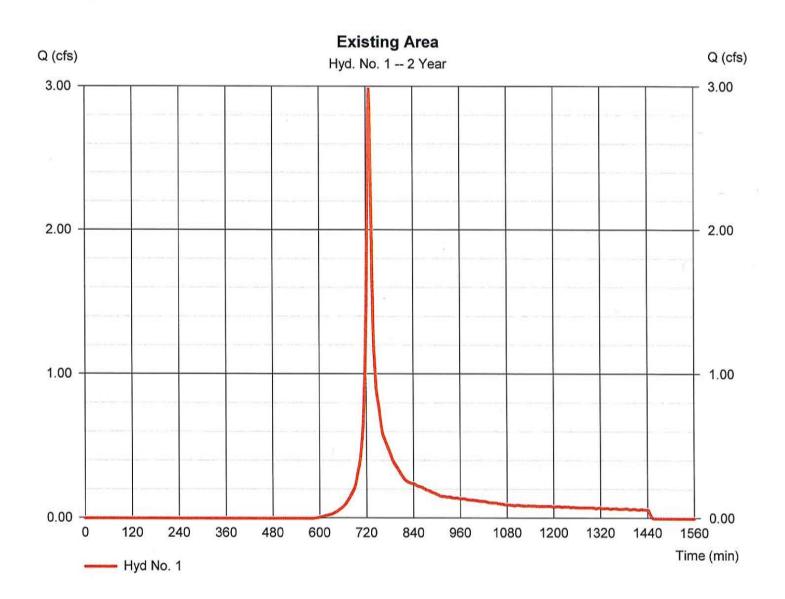
FLOWS TO THE OIL SEPARATOR

The drainage manhole outlet culverts have been designed so that the entire 2 year storm event will go to the oil separator, via 12 inch culverts. The 18 inch culverts from the manholes to the basin will receive flows for all storms greater then the 2 year storm events. See the attached culvert report for Flows from the manholes to the Oil Separator.

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	2.987	1	729	10,518	*****		*****	Existing Area
2	SCS Runoff	5.324	1	729	19,002				Proposed Area
3	Reservoir	2.079	1	739	14,449	2	236.47	8,220	Water Quality Basin
5	Rational	2.899	1	5	3,044				Flows to Southern Manhole
6	Rational	2.899	1	5	3,044			H	Flows to Northern Manhole
			*				-		
		Е				_			
8									
		4							
							-		5
*	1.4			as Per					
	.4								
			6	*					
									ή.
						0.0			
				k.					
									±
		Vii							

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025


Thursday, 05 / 1 / 2025

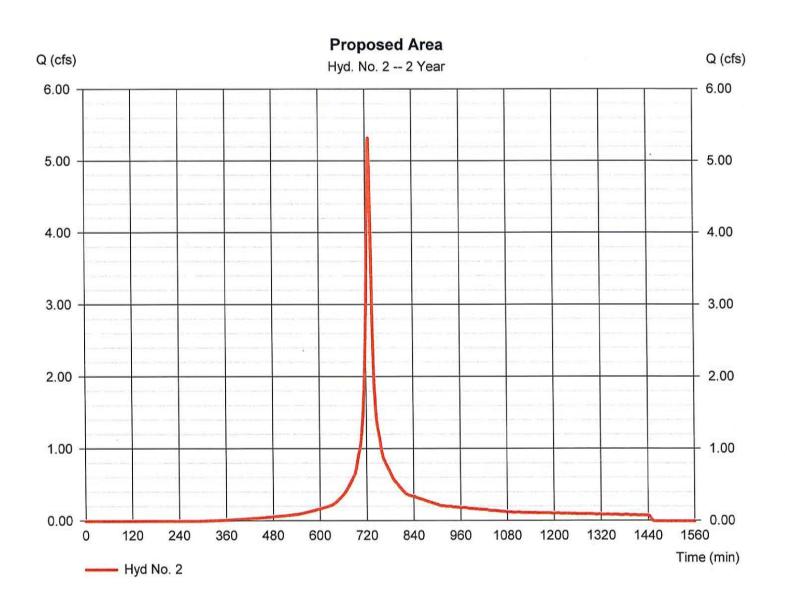
Hyd. No. 1

Existing Area

Peak discharge Hydrograph type = SCS Runoff = 2.987 cfsStorm frequency Time to peak = 2 yrs = 729 min Time interval Hyd. volume = 1 min = 10,518 cuft Drainage area Curve number = 2.180 ac= 76* Hydraulic length Basin Slope = 0.0 %= 0 ftTime of conc. (Tc) Tc method = User $= 10.00 \, \text{min}$ Total precip. Distribution = 3.45 in= Custom Storm duration = NOAA Type D Distribution 1 rollmagetsfactor = 484

^{*} Composite (Area/CN) = [(0.400 x 98) + (1.300 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025


Thursday, 05 / 1 / 2025

Hyd. No. 2

Proposed Area

Peak discharge = 5.324 cfsHydrograph type = SCS Runoff Storm frequency Time to peak = 2 yrs= 729 min Time interval Hyd. volume = 19,002 cuft = 1 min Drainage area Curve number = 90* = 2.180 acHydraulic length = 0 ftBasin Slope = 0.0 %Time of conc. (Tc) $= 10.00 \, \text{min}$ Tc method = User Total precip. Distribution = Custom = 3.45 in= NOAA Type D Distribution 1 rollmacutsfactor Storm duration = 484

^{*} Composite (Area/CN) = [(1.600 x 98) + (0.580 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 3

Water Quality Basin

Hydrograph type Storm frequency = Reservoir

Peak discharge Time to peak

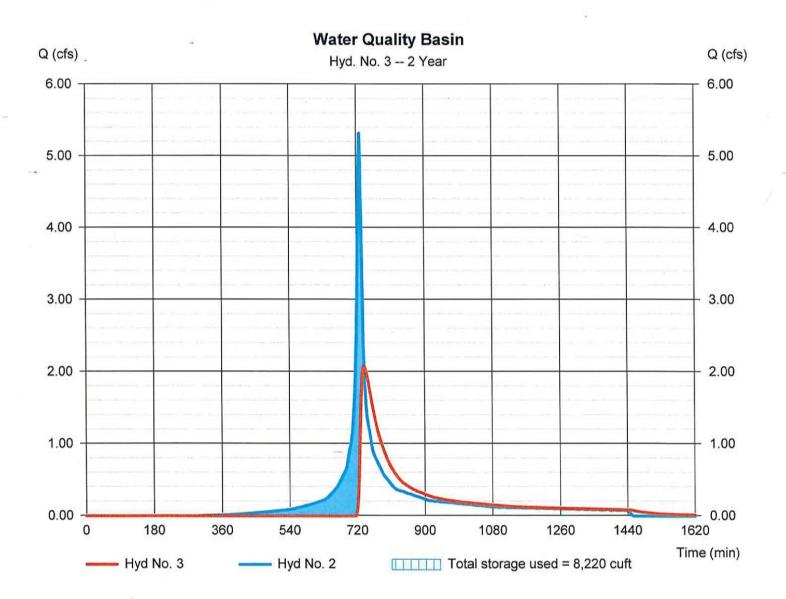
= 2.079 cfs= 739 min

Time interval

= 2 yrs = 1 min

= Pond 1

Hyd. volume


= 14,449 cuft $= 236.47 \, \text{ft}$

Inflow hyd. No. Reservoir name = 2 - Proposed Area

Max. Elevation Max. Storage

= 8,220 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025


Hyd. No. 5

Flows to Southern Manhole

Hydrograph type = Rational
Storm frequency = 2 yrs
Time interval = 1 min
Drainage area = 0.800 ac
Intensity = 4.832 in/hr

IDF Curve = GSD-60 NOAA.IDF

Peak discharge = 2.899 cfs
Time to peak = 5 min
Hyd. volume = 3,044 cuft
Runoff coeff. = 0.75
Tc by User = 5.00 min
Asc/Rec limb fact = 1/6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025


Hyd. No. 6

Flows to Northern Manhole

Hydrograph type = Rational
Storm frequency = 2 yrs
Time interval = 1 min
Drainage area = 0.800 ac
Intensity = 4.832 in/hr

IDF Curve = GSD-60 NOAA.IDF

Peak discharge = 2.899 cfs
Time to peak = 5 min
Hyd. volume = 3,044 cuft
Runoff coeff. = 0.75
Tc by User = 5.00 min
Asc/Rec limb fact = 1/6

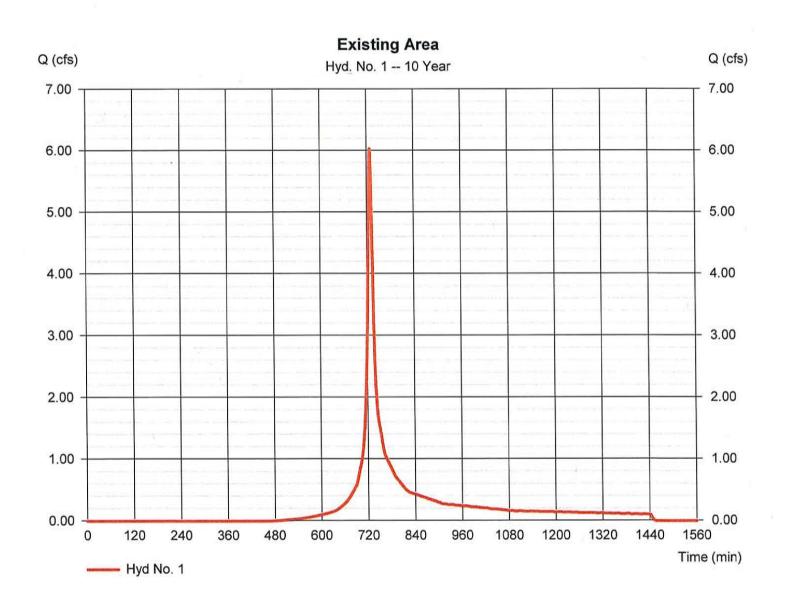
Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	6.035	1	729	20,981				Existing Area
2	SCS Runoff	8.648	1	729	31,744			2000000	Proposed Area
3	Reservoir	3.880	1	738	27,192	2	237.30	11,855	Water Quality Basin
5	Rational	4.342	1	5	4,559			(Flows to Southern Manhole
6	Rational	4.342	1	5	4,559			-	Flows to Northern Manhole
			,						
	<u></u>					44			
		2							
	-								
								Ti.	
	0								
-	SD 74 - Drain	age Calc	ulations	- 90900	W OBaturn	Period: 10) Vear	Thursday	, 05 / 1 / 2025

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 1


Existing Area

Hydrograph type= SCS RunoffPeak discharge= 6.035 cfsStorm frequency= 10 yrsTime to peak= 729 minTime interval= 1 minHyd. volume= 20,981 cuft

Drainage area = 2.180 ac Curve number = 76* Basin Slope = 0.0 % Hydraulic length = 0 ft

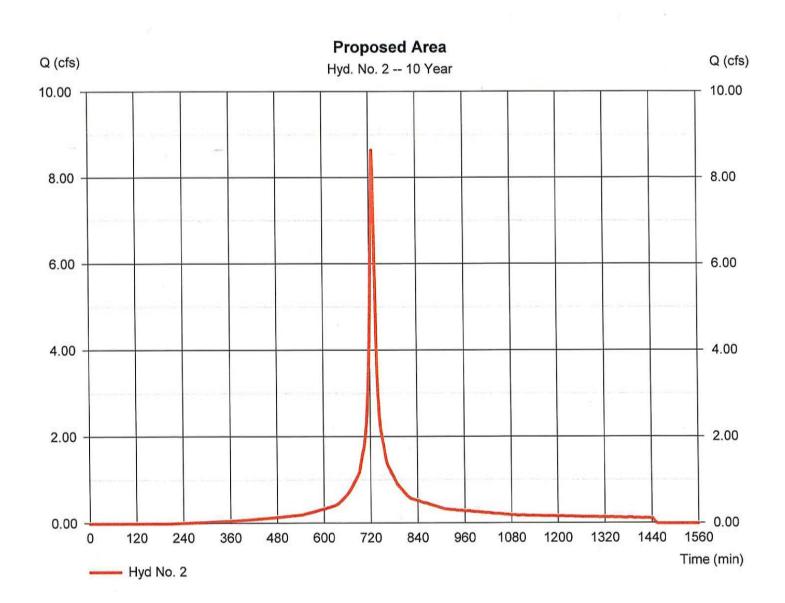
Tc method = User Time of conc. (Tc) = 10.00 min
Total precip. = 5.14 in Distribution = Custom
Storm duration = NOAA Type D Distribution 1 r6imagesfactor = 484

* Composite (Area/CN) = [(0.400 x 98) + (1.300 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 2


Proposed Area

Hydrograph type= SCS RunoffPeak discharge= 8.648 cfsStorm frequency= 10 yrsTime to peak= 729 minTime interval= 1 minHyd. volume= 31,744 cuft

Drainage area = 2.180 ac Curve number = 90^* Basin Slope = 0.0% Hydraulic length = 0 ft

Tc method = User Time of conc. (Tc) = 10.00 min
Total precip. = 5.14 in Distribution = Custom
Storm duration = NOAA Type D Distribution 1 r8imagetsfactor = 484

* Composite (Area/CN) = [(1.600 x 98) + (0.580 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 3

Water Quality Basin

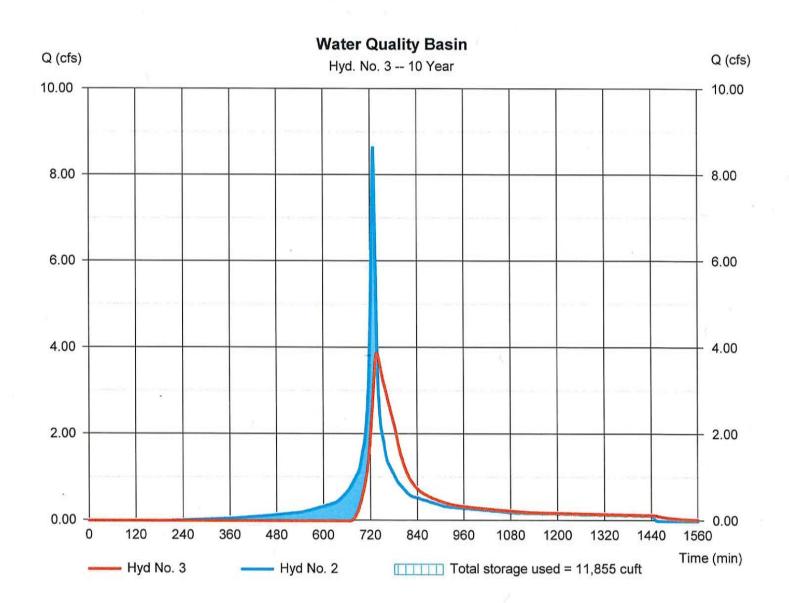
Hydrograph type Storm frequency = Reservoir = 10 yrs Peak discharge Time to peak = 3.880 cfs = 738 min

Time interval Inflow hyd. No.

= 1 min

Hyd. volume Max. Elevation

= 27,192 cuft = 237.30 ft


Reservoir name

= 2 - Proposed Area = Pond 1

Max. Storage

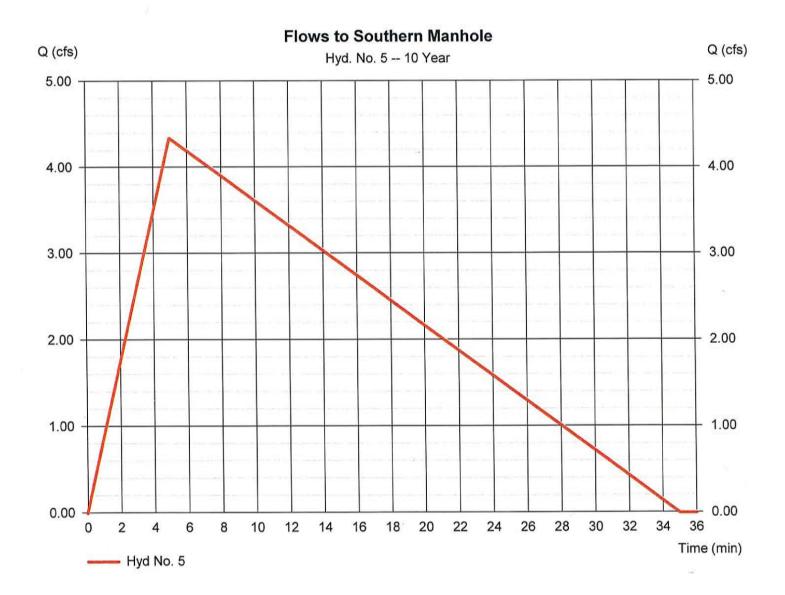
= 11,855 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 5


Flows to Southern Manhole

Hydrograph type = Rational
Storm frequency = 10 yrs
Time interval = 1 min
Drainage area = 0.800 ac
Intensity = 7.237 in/hr

IDF Curve = GSD-60 NOAA.IDF

Peak discharge = 4.342 cfs
Time to peak = 5 min
Hyd. volume = 4,559 cuft
Runoff coeff. = 0.75
Tc by User = 5.00 min

Asc/Rec limb fact = 1/6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 6

Flows to Northern Manhole

Hydrograph type = Rational
Storm frequency = 10 yrs
Time interval = 1 min
Drainage area = 0.800 ac
Intensity = 7.237 in/hr


IDF Curve = GSD-60 NOAA.IDF

Peak discharge = 4.342 cfs Time to peak = 5 min

Hyd. volume = 4,559 cuft

Runoff coeff. = 0.75 Tc by User = 5.00 min

Asc/Rec limb fact = 1/6

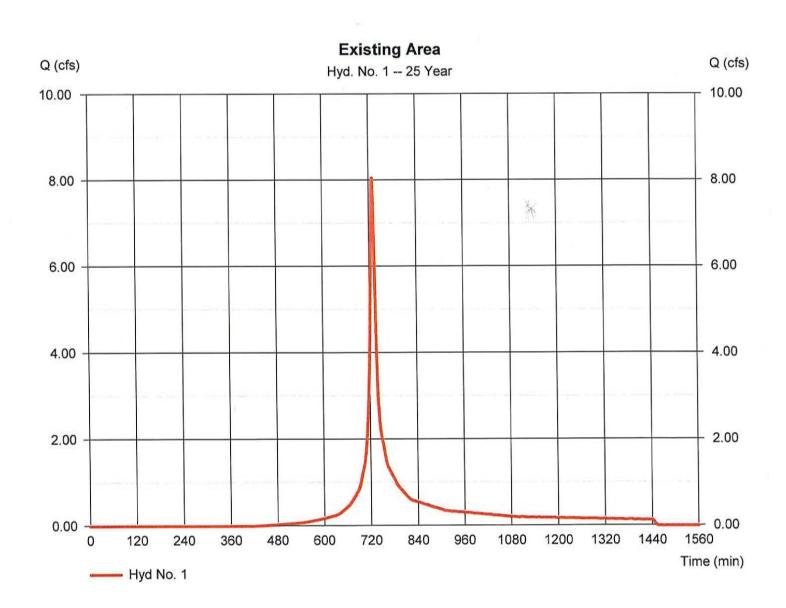
Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

yd. o.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	8.059	1	729	28,119				Existing Area
2	SCS Runoff	10.72	1	728	39,890				Proposed Area
3	Reservoir	5.304	1	737	35,337	2	237.65	13,514	Water Quality Basin
5	Rational	5.227	1	5	5,489				Flows to Southern Manhole
6	Rational	5.227	1	5	5,489			1000000	Flows to Northern Manhole
	*								
			18						
								*	8
	344							-	¥
	e -								
					y.				
									1
			198+						
	SD 74 - Drair	age Calc	culations	- SCSan	w akkwhura	Period: 25	Year	Thursday	, 05 / 1 / 2025

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 1


Existing Area

Hydrograph type= SCS RunoffPeak discharge= 8.059 cfsStorm frequency= 25 yrsTime to peak= 729 minTime interval= 1 minHyd. volume= 28,119 cuftDrainage area= 2.180 acCurve number= 76*

Drainage area = 2.180 ac Curve number = 76^* Basin Slope = 0.0% Hydraulic length = 0.0%

Tc method = User Time of conc. (Tc) = 10.00 min
Total precip. = 6.20 in Distribution = Custom
Storm duration = NOAA Type D Distribution 1 r6imagesfactor = 484

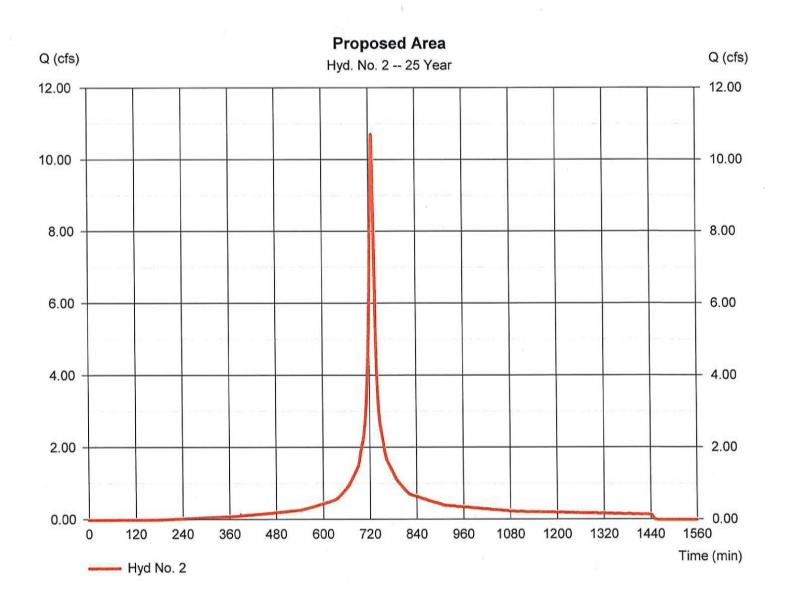
^{*} Composite (Area/CN) = [(0.400 x 98) + (1.300 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 2

Proposed Area


Hydrograph type= SCS RunoffPeak discharge= 10.72 cfsStorm frequency= 25 yrsTime to peak= 728 minTime interval= 1 minHyd. volume= 39,890 cuft

Drainage area = 2.180 ac Curve number = 90^* Basin Slope = 0.0% Hydraulic length = 0.0%

Tc method = User Time of conc. (Tc) = 10.00 min
Total precip. = 6.20 in Distribution = Custom

Storm duration = NOAA Type D Distribution 1 rollmagnetsfactor = 484

^{*} Composite (Area/CN) = [(1.600 x 98) + (0.580 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 3

Water Quality Basin

Hydrograph type Storm frequency = Reservoir = 25 yrs

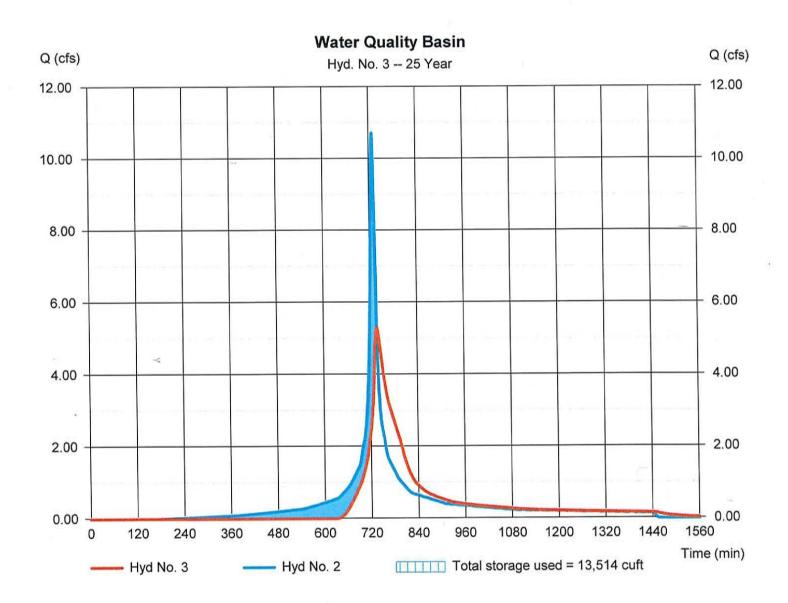
Peak discharge Time to peak

= 5.304 cfs= 737 min

Time interval

= 1 min

Hyd. volume


= 35,337 cuft= 237.65 ft

Inflow hyd. No. Reservoir name = 2 - Proposed Area = Pond 1

Max. Elevation Max. Storage

= 13,514 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 5

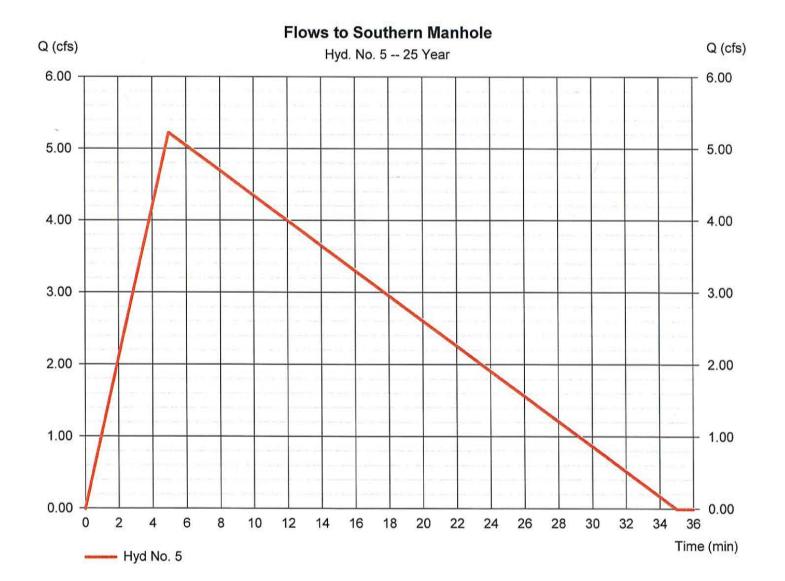
Flows to Southern Manhole

Hydrograph type = Rational Storm frequency = 25 yrsTime interval = 1 minDrainage area = 0.800 acIntensity

IDF Curve

= 8.712 in/hr

= GSD-60 NOAA.IDF


Peak discharge = 5.227 cfsTime to peak = 5 min

Hyd. volume = 5,489 cuft

Runoff coeff. = 0.75

Tc by User $= 5.00 \, \text{min}$

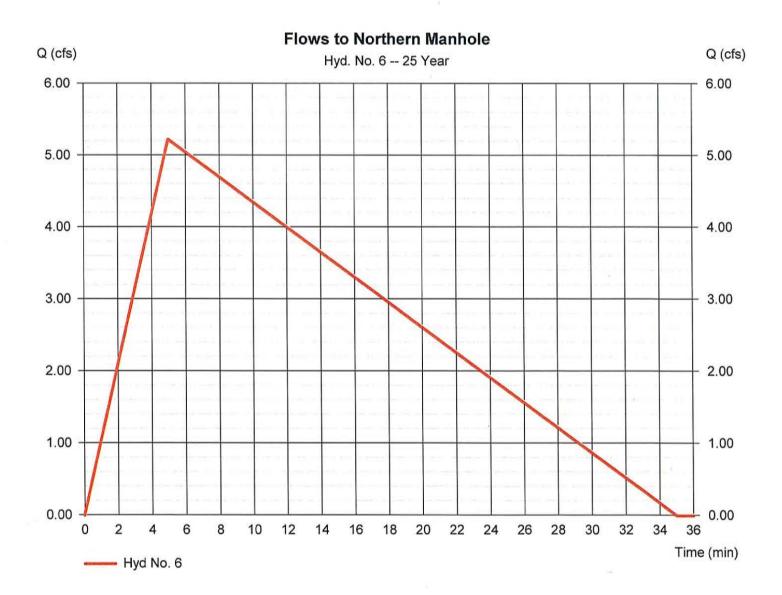
Asc/Rec limb fact = 1/6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

 $= 5.00 \, \text{min}$

Hyd. No. 6


Flows to Northern Manhole

Hydrograph type = Rational Storm frequency = 25 yrsTime interval = 1 min Drainage area = 0.800 acIntensity = 8.712 in/hr**IDF** Curve

= GSD-60 NOAA.IDF

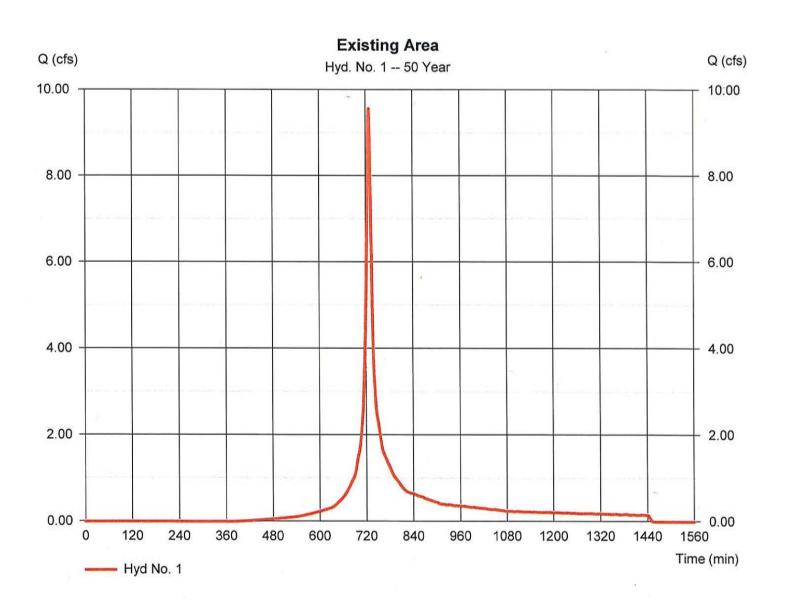
Peak discharge = 5.227 cfsTime to peak = 5 minHyd. volume = 5.489 cuftRunoff coeff. = 0.75Tc by User

Asc/Rec limb fact = 1/6

Hydrograph Summary Report Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

yd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	9.574	1	729	33,549		1200 Decided		Existing Area
2	SCS Runoff	12.24	1	728	45,926				Proposed Area
3	Reservoir	6.292	1	737	41,373	2	237.88	14,624	Water Quality Basin
5	Rational	5.889	1	5	6,184		10 + 17 11 17 1 1 	AND AND THE STATE OF THE STATE	Flows to Southern Manhole
6	Rational	5.889	1	5	6,184				Flows to Northern Manhole
				¥					
	-								
								×	
		A .							
									¥.
	SD 74 - Drair		- No.				2000		y, 05 / 1 / 2025

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025


Thursday, 05 / 1 / 2025

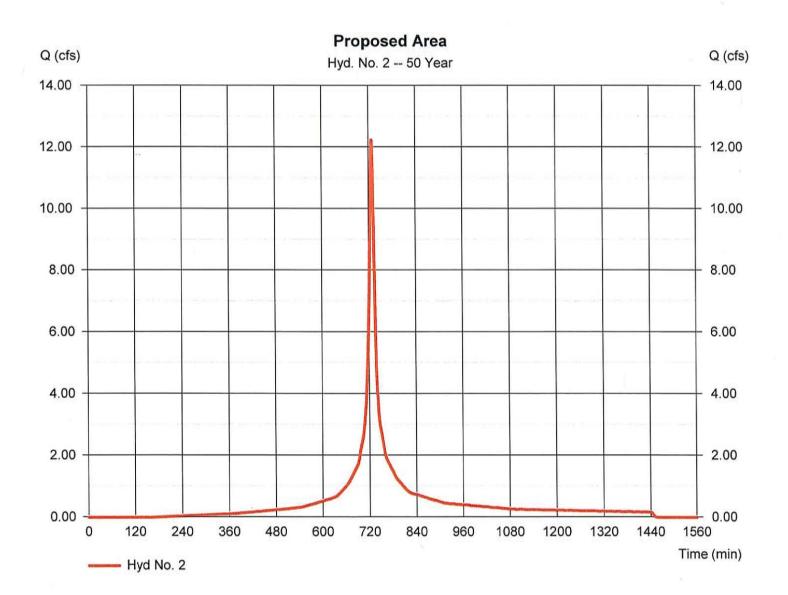
Hyd. No. 1

Existing Area

Hydrograph type = SCS Runoff Peak discharge = 9.574 cfsStorm frequency = 50 yrsTime to peak = 729 min Time interval Hyd. volume = 1 min = 33,549 cuft Drainage area = 2.180 ac Curve number = 76* Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 10.00 \, \text{min}$ Total precip. = 6.98 inDistribution = Custom Storm duration = NOAA Type D Distribution 1 rollmacodesfactor = 484

^{*} Composite (Area/CN) = [(0.400 x 98) + (1.300 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025


Thursday, 05 / 1 / 2025

Hyd. No. 2

Proposed Area

Peak discharge Hydrograph type = SCS Runoff = 12.24 cfsStorm frequency Time to peak = 50 yrs= 728 min Time interval = 1 minHyd. volume = 45,926 cuft Drainage area = 2.180 acCurve number = 90* Basin Slope Hydraulic length = 0.0 %= 0 ftTc method Time of conc. (Tc) = User $= 10.00 \, \text{min}$ Total precip. = 6.98 inDistribution = Custom Storm duration = NOAA Type D Distribution 1 raimage#sfactor = 484

^{*} Composite (Area/CN) = [(1.600 x 98) + (0.580 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 3

Water Quality Basin

Hydrograph type Storm frequency = Reservoir

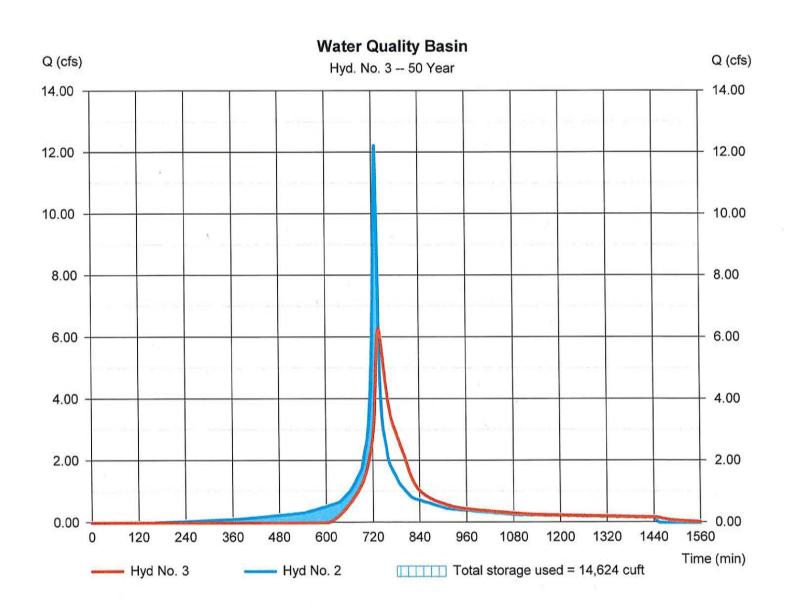
Peak discharge Time to peak

= 6.292 cfs $= 737 \, \text{min}$

Time interval

= 50 yrs= 1 min

Hyd. volume


= 41,373 cuft

Inflow hyd. No. Reservoir name = 2 - Proposed Area = Pond 1

Max. Elevation Max. Storage

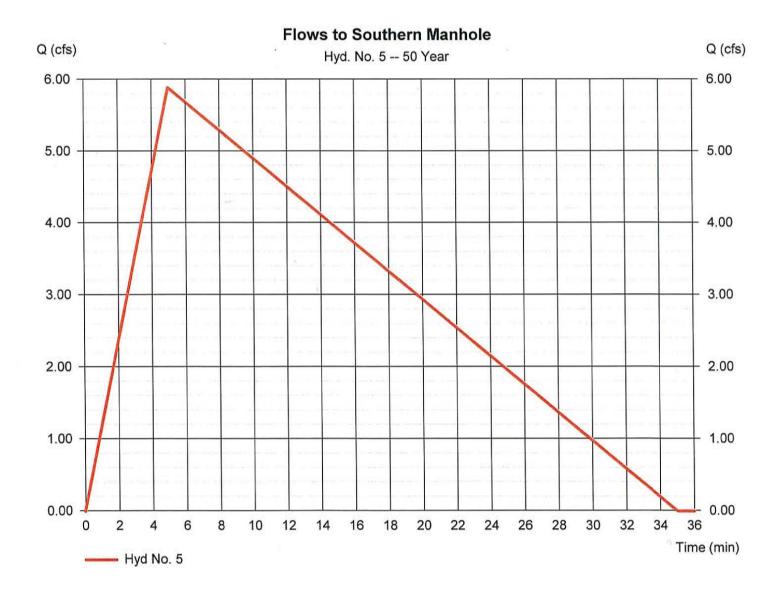
= 237.88 ft = 14,624 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 5


Flows to Southern Manhole

Hydrograph type = Rational
Storm frequency = 50 yrs
Time interval = 1 min
Drainage area = 0.800 ac
Intensity = 9.816 in/hr

IDF Curve = GSD-60 NOAA.IDF

Peak discharge = 5.889 cfs
Time to peak = 5 min
Hyd. volume = 6,184 cuft
Runoff coeff. = 0.75
Tc by User = 5.00 min

Asc/Rec limb fact = 1/6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

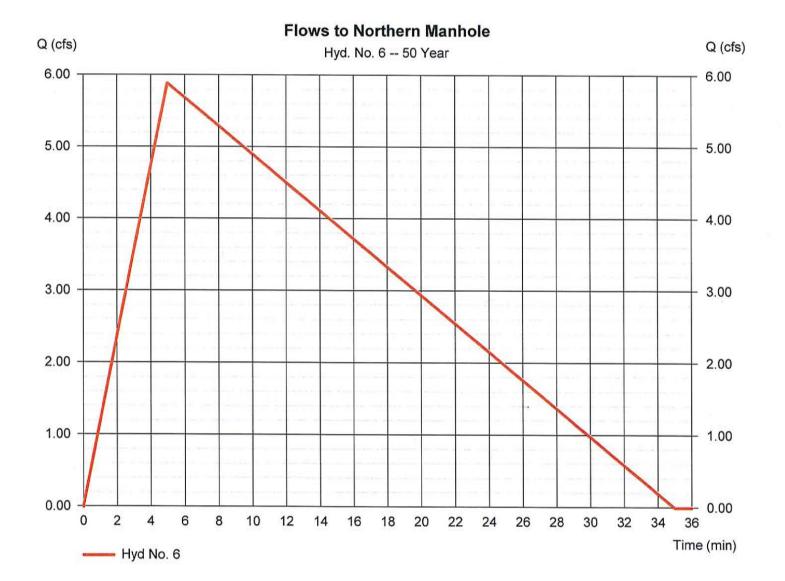
Hyd. No. 6

Flows to Northern Manhole

Hydrograph type = Rational Storm frequency = 50 yrsTime interval = 1 min Drainage area = 0.800 acIntensity

IDF Curve

= 9.816 in/hr


= GSD-60 NOAA.IDF

Peak discharge = 5.889 cfsTime to peak $= 5 \min$

Hyd. volume = 6,184 cuft

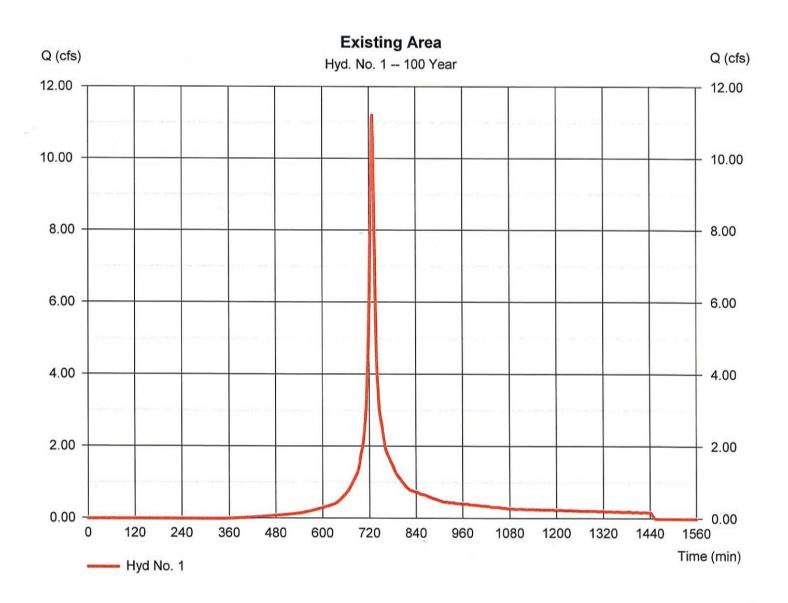
Runoff coeff. = 0.75Tc by User $= 5.00 \, \text{min}$

Asc/Rec limb fact = 1/6

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

lyd. lo.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	11.22	1	729	39,523				Existing Area
2	SCS Runoff	13.87	1	728	52,453				Proposed Area
3	Reservoir	7.107	1	737	47,901	2	238.12	15,845	Water Quality Basin
5	Rational	6.600	1	5	6,930	*****			Flows to Southern Manhole
6	Rational	6.600	1	5	6,930				Flows to Northern Manhole
						See	91		
		,							
									4
	y ·								
									#
									<i>y</i>
GS	D 74 - Drair	age Calc	ulations	- SCSgp	w.gksweturn	Period: 10) Year	Thursday,	05 / 1 / 2025

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025


Thursday, 05 / 1 / 2025

Hyd. No. 1

Existing Area

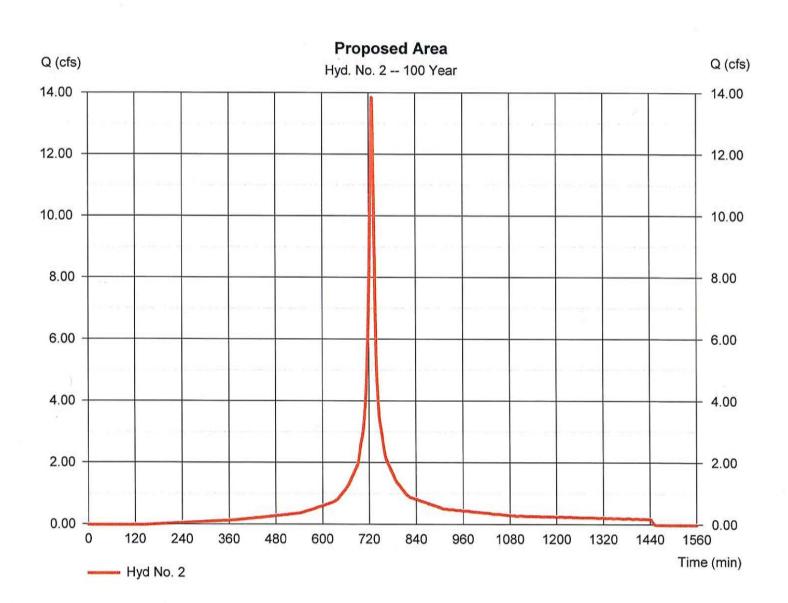
Hydrograph type = SCS Runoff Peak discharge = 11.22 cfsStorm frequency = 100 yrsTime to peak = 729 min Time interval = 1 min Hyd. volume = 39,523 cuft Drainage area = 2.180 ac= 76* Curve number Basin Slope = 0.0 %Hydraulic length = 0 ftTc method = User Time of conc. (Tc) $= 10.00 \, \text{min}$ Total precip. = 7.82 inDistribution = Custom Storm duration = NOAA Type D Distribution 1 rollmagetsfactor = 484

^{*} Composite (Area/CN) = [(0.400 x 98) + (1.300 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

= 484


Hyd. No. 2

Proposed Area

Hydrograph type = SCS Runoff Peak discharge = 13.87 cfs= 100 yrs Storm frequency Time to peak = 728 min Time interval = 1 min Hyd. volume = 52,453 cuft Drainage area = 2.180 acCurve number = 90* Basin Slope = 0.0 %Hydraulic length = 0 ftTime of conc. (Tc) Tc method = User $= 10.00 \, \text{min}$ Total precip. = 7.82 inDistribution = Custom Storm duration

= NOAA Type D Distribution 1 rollmaccesfactor

^{*} Composite (Area/CN) = [(1.600 x 98) + (0.580 x 69)] / 2.180

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 3

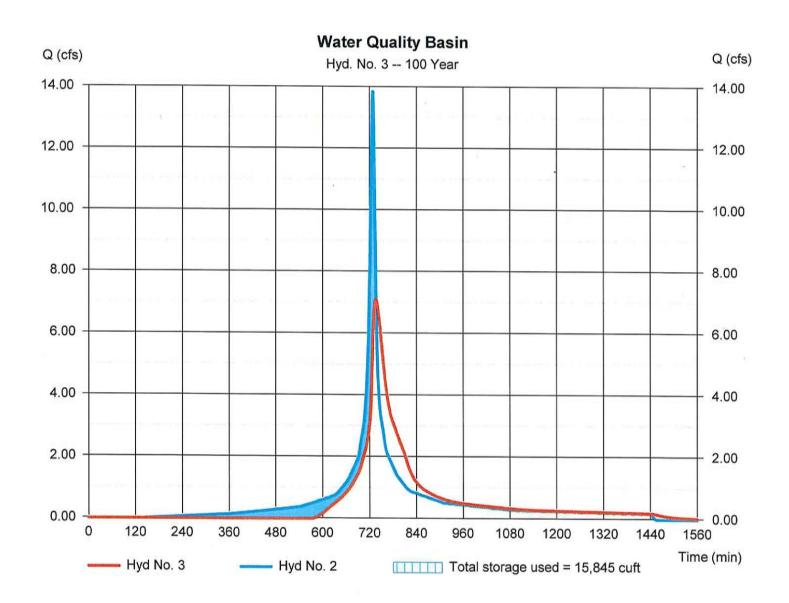
Water Quality Basin

Hydrograph type = Reservoir Storm frequency Time interval = 1 min

Inflow hyd. No. Reservoir name = 100 yrs

= 2 - Proposed Area

= Pond 1


Peak discharge Time to peak

= 7.107 cfs $= 737 \, \text{min}$

Hyd. volume = 47,901 cuftMax. Elevation $= 238.12 \, \mathrm{ft}$

Max. Storage = 15,845 cuft

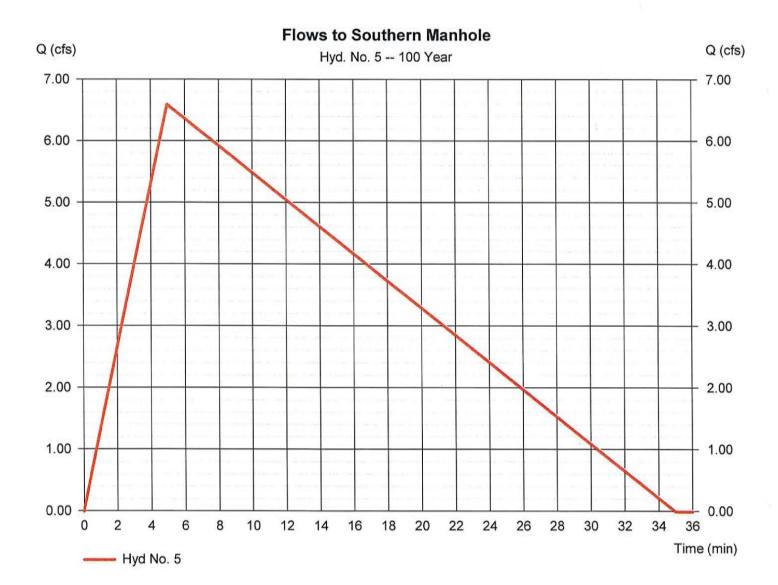
Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 5

Flows to Southern Manhole


Hydrograph type = Rational
Storm frequency = 100 yrs
Time interval = 1 min
Drainage area = 0.800 ac
Intensity = 10.999 in/hr

IDF Curve = GSD-60 NOAA.IDF

Peak discharge = 6.600 cfs
Time to peak = 5 min
Hyd. volume = 6,930 cuft
Runoff coeff. = 0.75

Tc by User = 5.00 min

Asc/Rec limb fact = 1/6

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

Thursday, 05 / 1 / 2025

Hyd. No. 6

Flows to Northern Manhole

Hydrograph type Storm frequency Time interval

Drainage area

= Rational = 100 yrs

= 1 min= 0.800 ac

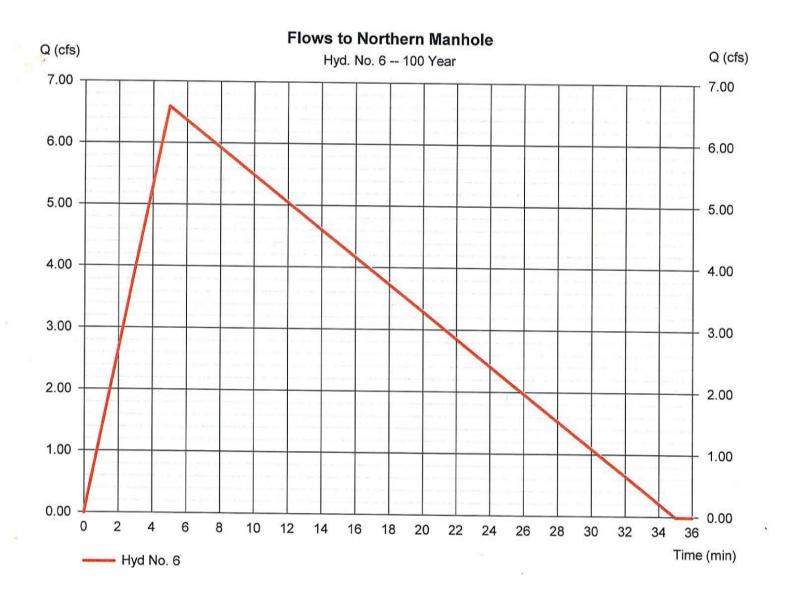
Intensity **IDF** Curve = 10.999 in/hr

= GSD-60 NOAA.IDF

Peak discharge Time to peak

= 6.600 cfs= 5 min

Hyd. volume


= 6,930 cuft

Runoff coeff. Tc by User

= 0.75 $= 5.00 \, \text{min}$

Asc/Rec limb fact

= 1/6

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2025

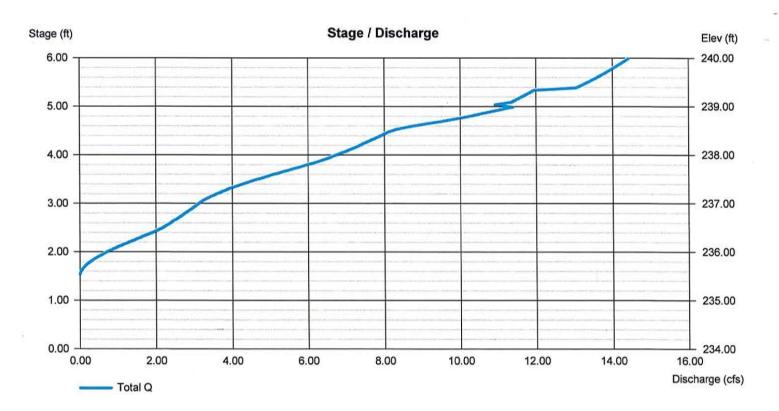
Wednesday, 04 / 30 / 2025

Pond No. 1 - Pond 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 234.00 ft

Stage / Storage Table


					- Trans
Stage (ft)		Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00		234.00	2,475	0	0
0.50		234.50	2,840	1,328	1,328
1.00		235.00	3,205	1,510	2,838
1.50		235.50	3,570	1,693	4,531
2.00		236.00	3,810	1,844	6,375
2.50	in .	236.50	- 4,113	1,980	8,355
3.00		237.00	4,416	2,132	10,487
3.50		237.50	4,719	2,283	12,770
4.00		238.00	5,025	2,435	15,205
4.50		238.50	5,333	2,589	17,794
5.00		239.00	5,642	2,743	20,537
5.50		239.50	5,951	2,898	23,435
6.00		240.00	6,263	3,053	26,488

Culvert / Orifice Structures

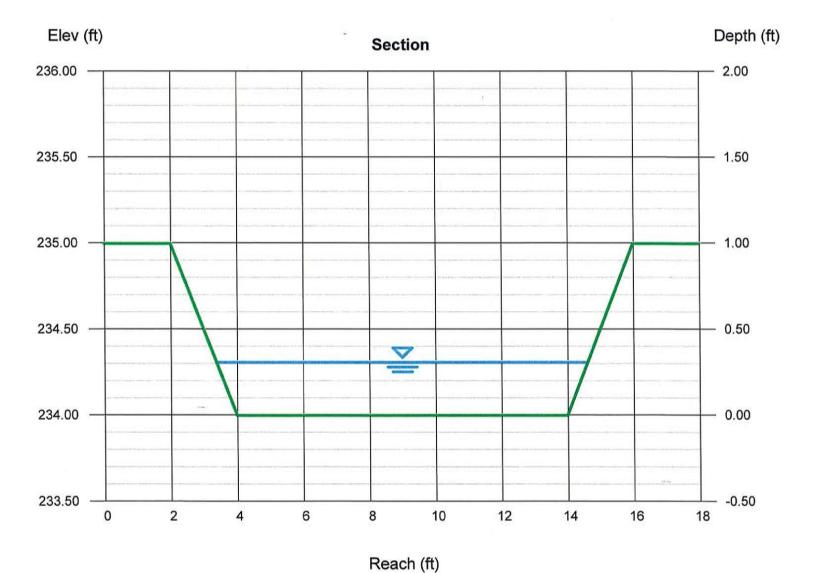
Weir Structures

3.00 12.00 3.00 12.00	12.00 12.00	0.00	Crest Len (ft)	= 4.00	0.00	0.00	0.00
12.00	12.00	0.00					0.00
4		0.00	Crest El. (ft)	= 238.50	0.00	0.00	0.00
1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
5.50 235.50	237.00	0.00	Weir Type	= 1			
0.00 1.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
00.00	0.00	n/a	100200816 D51014 0 08				
.013	.013	n/a					
60 0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)	
a Yes	Yes	No	TW Elev. (ft)	= 0.00		5)	
1:1	0.00 1.00 0 0.00 3 .013 0 0.60	0.00 1.00 0.00 0 0.00 0.00 3 .013 .013 0 0.60 0.60	0.50 235.50 237.00 0.00 0.00 1.00 0.00 0.00 0 0.00 0.00	5.50 235.50 237.00 0.00 Weir Type 6.00 1.00 0.00 0.00 Multi-Stage 6.00 0.00 0.00 n/a 6.013 .013 n/a 6.00 0.60 0.60 Exfil.(in/hr)	5.50 235.50 237.00 0.00 Weir Type = 1 5.00 1.00 0.00 0.00 Multi-Stage = Yes 5.50 0.00 0.00 n/a 5.50 237.00 0.00 Multi-Stage = Yes 5.50 0.00 0.00 n/a 6.50 0.00 0.00 Exfil.(in/hr) = 0.000 (by	5.50 235.50 237.00 0.00 Weir Type = 1 5.00 1.00 0.00 0.00 Multi-Stage = Yes No 5.50 0.00 0.00 n/a 5.50 235.50 237.00 0.00 Multi-Stage = Yes No 5.50 0.00 0.00 n/a 6.50 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area	5.50 235.50 237.00 0.00 Weir Type = 1 0.00 1.00 0.00 0.00 Multi-Stage = Yes No No 0 0.00 0.00 n/a 3 .013 .013 n/a 0 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Channel Report

Known Q (cfs)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Apr 30 2025

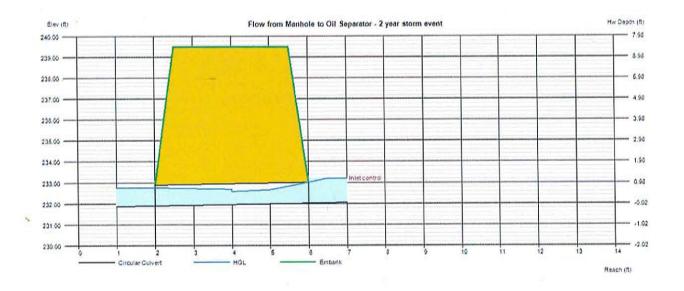
Rip Rap Level Spreader at Butlertown Road

= 5.30

Trapezoidal		Highlighted	
Bottom Width (ft)	= 10.00	Depth (ft)	= 0.31
Side Slopes (z:1)	= 2.00, 2.00	Q (cfs)	= 5.300
Total Depth (ft)	= 1.00	Area (sqft)	= 3.29
Invert Elev (ft)	= 234.00	Velocity (ft/s)	= 1.61
Slope (%)	= 1.00	Wetted Perim (ft)	= 11.39
N-Value	= 0.040	Crit Depth, Yc (ft)	= 0.21
		Top Width (ft)	= 11.24
Calculations		EGL (ft)	= 0.35
Compute by:	Known Q		

CLA ENGINEERS, INC.
Civil • Structural • Survey 317 Main Street NORWICH, CONNECTICUT 06360 (860) 886-1966 FAX 886-9165

PROJECT NO:	SHEET NO	OF_
BY:	DATE	
SCALE:		


RIPEAR SPLASH PAR INTO WATER QUALITY BASKS
Q25=10,72CF5
$C = \frac{1.7Q}{0.5} + 80 = \frac{1.7(10.72)}{1.5^{3/2}} + 8(1.5) = 22CF$
W= 30+0.46 = 13,3FT
$d50 = \left(\frac{0.02}{14}\right)\left(\frac{a}{0}\right)^{4/3} = \left(\frac{0.02}{0.5(1.5)}\right)\left(\frac{10.72}{1.5}\right)^{4/3} = 0.37$ $= 4.44 sect$
USE ILLTERMEDIATE RIPPAD

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, May 1 2025

Flow from Manhole to Oil Separator - 2 year storm event

		523 Y Y 343	
Invert Elev Dn (ft)	= 231.90	Calculations	
Pipe Length (ft)	= 4.00	Qmin (cfs)	= 2.90
Slope (%)	= 3.00	Qmax (cfs)	= 2.90
Invert Elev Up (ft)	= 232.02	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 12.0		
Shape	= Circular	Highlighted	
Span (in)	= 12.0	Qtotal (cfs)	= 2.90
No. Barrels	= 1	Qpipe (cfs)	= 2.90
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.02
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.72
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 232.76
		HGL Up (ft)	= 232.75
Embankment.		Hw Elev (ft)	= 233.22
Top Elevation (ft)	= 239.50	Hw/D (ft)	= 1.20
Top Width (ft)	= 3.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 0.00	The second secon	

